If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7x^2+5x+11=0
a = -7; b = 5; c = +11;
Δ = b2-4ac
Δ = 52-4·(-7)·11
Δ = 333
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{333}=\sqrt{9*37}=\sqrt{9}*\sqrt{37}=3\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3\sqrt{37}}{2*-7}=\frac{-5-3\sqrt{37}}{-14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3\sqrt{37}}{2*-7}=\frac{-5+3\sqrt{37}}{-14} $
| (-1+5x)=8x+1 | | -20+b=-b+20 | | 1/2x-1/9=1/18x+2/9 | | 7x+5(3x-15)=13 | | -16=f/4-19 | | -7(-3x+8)-3x=4(x-9)-4 | | y/5+3=-15 | | (3x+7)=(2x−1) | | x=5865/25891 | | -8(z+1)=3-7z | | 3x-72=3x+40 | | 21x-56-3x=4x-36-4 | | 10=h-3+14 | | (10x+2)+89=2x+1 | | s/7+12=7 | | 13x=22+5x | | -43=p-54 | | -1/2+1/5b=3/2 | | -7(7x+2)=-308 | | 3x+4(4x+5)=58 | | 5x+2x=6x+3 | | 4(7x-8.1)=4(10x-13) | | -(y+4)+2y=-18 | | p=5865/25891+1992/25891-5865/25891*1992/25891 | | x+4x=102 | | 90=(3x+12) | | p2+ 6=10 | | 9x+5+17+17=180 | | 4-7x=-12 | | v/9+-18=-15 | | y+-20=-51 | | 1.22+54x=-20+60x |